
Package: DiceDesign (via r-universe)
September 18, 2024

Type Package

Title Designs of Computer Experiments

Version 1.10

Date 2023-11-30

Author Jessica Franco, Delphine Dupuy, Olivier Roustant, Patrice
Kiener, Guillaume Damblin and Bertrand Iooss.

Maintainer Celine Helbert <Celine.Helbert@ec-lyon.fr>

Description Space-Filling Designs and space-filling criteria
(distance-based and uniformity-based), with emphasis to
computer experiments; <doi:10.18637/jss.v065.i11>.

License GPL-3

Depends R (>= 2.10)

Suggests rgl, randtoolbox, lattice

Encoding UTF-8

NeedsCompilation yes

LazyData true

Date/Publication 2023-12-07 12:00:10 UTC

Repository https://chelbert.r-universe.dev

RemoteUrl https://github.com/cran/DiceDesign

RemoteRef HEAD

RemoteSha cb8ed2de4f6664b2d4e3d5355608ea95c97ced24

Contents
DiceDesign-package . 2
coverage . 5
discrepancyCriteria . 6
discrepESE_LHS . 8
discrepSA_LHS . 9
dmaxDesign . 11

1

https://doi.org/10.18637/jss.v065.i11

2 DiceDesign-package

factDesign . 13
faureprimeDesign . 14
lhsDesign . 16
maximinESE_LHS . 17
maximinSA_LHS . 19
meshRatio . 21
mindist . 22
mstCriteria . 23
nolhDesign . 24
NOLHdesigns . 25
nolhdrDesign . 26
NOLHDRdesigns . 27
OA131 . 29
OA131_scrambled . 30
olhDesign . 30
phiP . 32
rss2d . 33
rss3d . 35
runif.faure . 38
scaleDesign . 39
straussDesign . 40
unif.test.quantile . 42
unif.test.statistic . 43
unscaleDesign . 44
wspDesign . 45
xDRDN . 46

Index 48

DiceDesign-package Designs of Computer Experiments

Description

Space-Filling Designs (SFD) and space-filling criteria (distance-based and uniformity-based).

Details

This package provides tools to create some specific Space-Filling Design (SFD) and to test their
quality:

• Latin Hypercube designs (randomized or centered)

• Strauss SFD and Maximum entropy SFD, WSP designs

• Optimal (low-discrepancy and maximin) Latin Hypercube desigsn by simulated annealing and
genetic algorithms,

• Orthogonal and Nearly Orthogonal Latin Hypercube designs,

• Discrepancies criteria, distance measures,

DiceDesign-package 3

• Minimal spanning tree criteria,

• Radial scanning statistic

Note

Part of this work was conducted on 2006-2009 within the frame of the DICE (Deep Inside Computer
Experiments) Consortium between ARMINES, Renault, EDF, IRSN, ONERA and TOTAL S.A.
(http://dice.emse.fr/).

In this package, only Faure’s sequence is implemented. Note that the randtoolbox package provides
the following quasi random sequences: the Sobol sequence, the Halton (hence Van Der Corput)
sequence and the Torus sequence (also known as Kronecker sequence). Note also that the lhs
package provides other types of algorithms to compute optimized LHS.

Author(s)

J. Franco, D. Dupuy, O. Roustant, P. Kiener, G. Damblin and B. Iooss. Thanks to A. Jourdan for
discussions about OA131.

Maintainer: Celine Helbert <Celine.Helbert@ec-lyon.fr>

References

Cioppa T.M., Lucas T.W. (2007). Efficient nearly orthogonal and space-filling Latin hypercubes.
Technometrics 49, 45-55.

Damblin G., Couplet M., and Iooss B. (2013). Numerical studies of space filling designs: optimiza-
tion of Latin Hypercube Samples and subprojection properties, Journal of Simulation, 7:276-289,
2013.

De Rainville F.-M., Gagne C., Teytaud O., Laurendeau D. (2012). Evolutionary optimization of
low-discrepancy sequences. ACM Transactions on Modeling and Computer Simulation (TOMACS),
22(2), 9.

Dupuy D., Helbert C., Franco J. (2015), DiceDesign and DiceEval: Two R-Packages for Design
and Analysis of Computer Experiments, Journal of Statistical Software, 65(11), 1–38.

Fang K.-T., Li R. and Sudjianto A. (2006) Design and Modeling for Computer Experiments, Chap-
man & Hall.

Fang K-T., Liu M-Q., Qin H. and Zhou Y-D. (2018) Theory and application of uniform experimental
designs. Springer.

Nguyen N.K. (2008) A new class of orthogonal Latinhypercubes, Statistics and Applications, Vol-
ume 6, issues 1 and 2, pp.119-123.

Owen A.B. (2020), On dropping the first Sobol point, https://arxiv.org/abs/2008.08051.

Roustant O., Franco J., Carraro L., Jourdan A. (2010), A radial scanning statistic for selecting
space-filling designs in computer experiments, MODA-9 proceedings.

Santner T.J., Williams B.J. and Notz W.I. (2003) The Design and Analysis of Computer Experi-
ments, Springer, 121-161.

https://arxiv.org/abs/2008.08051

4 DiceDesign-package

Examples

Designs of experiments

A maximum entropy design with 20 points in [0,1]^2
p <- dmaxDesign(20,2,0.9,200)
plot(p$design,xlim=c(0,1),ylim=c(0,1))

Change the dimnames, adjust to range (-10, 10) and round to 2 digits
xDRDN(p, letter = "T", dgts = 2, range = c(-10, 10))

Criteria: L2-discrepancy

dp <- discrepancyCriteria(p$design,type=c('L2','C2'))
Coverage measure
covp <- coverage(p$design)

Criteria: Minimal Spanning Tree

mstCriteria(p$design,plot2d=TRUE)

**
Radial scanning statistic: Detection of defects of Sobol designs
**

requires randtoolbox package
library(randtoolbox)

in 2D
rss <- rss2d(design=sobol(n=20, dim=2), lower=c(0,0), upper=c(1,1),
type="l", col="red")

in 8D. All pairs of dimensions are tried to detect the worst defect
(according to the specified goodness-of-fit statistic).
d <- 8
n <- 10*d
rss <- rss2d(design=sobol(n=n, dim=d), lower=rep(0,d), upper=rep(1,d),
type="l", col="red")

avoid this defect with scrambling ?
1. Faure-Tezuka scrambling (type "?sobol" for more details and options)
rss <- rss2d(design=sobol(n=n, dim=d, scrambling=2), lower=rep(0,d),
upper=rep(1,d), type="l", col="red")

2. Owen scrambling
rss <- rss2d(design=sobol(n=n, dim=d, scrambling=1), lower=rep(0,d),
upper=rep(1,d), type="l", col="red")

coverage 5

coverage Coverage

Description

Compute the coverage measure

Usage

coverage(design)

Arguments

design a matrix (or a data.frame) representing the design of experiments representing
the design of experiments in the unit cube [0,1]d. If this last condition is not
fulfilled, a transformation into [0,1]d is applied before the computation of the
criteria.

Details

The coverage criterion is defined by

coverage =
1

γ̄

[
1

n

n∑
i=1

(γi − γ̄)
2

]1/2

where γi is the minimal distance between the point xi and the other points of the design and γ̄ is
the mean of the γi.

Note that for a regular mesh, cov=0. Then, a small value of cov means that the design is close to a
regular grid.

Value

A real number equal to the value of the coverage criterion for the design.

Author(s)

J. Franco

References

Gunzburer M., Burkdart J. (2004) Uniformity measures for point samples in hypercubes, https:
//people.sc.fsu.edu/~jburkardt/.

See Also

other distance criteria like meshRatio, phiP and mindist.

discrepancy measures provided by discrepancyCriteria.

https://people.sc.fsu.edu/~jburkardt/
https://people.sc.fsu.edu/~jburkardt/

6 discrepancyCriteria

Examples

dimension <- 2
n <- 40
X <- matrix(runif(n*dimension), n, dimension)
coverage(X)

discrepancyCriteria Discrepancy measure

Description

Compute discrepancy criteria.

Usage

discrepancyCriteria(design,type='all')

Arguments

design a matrix (or a data.frame) corresponding to the design of experiments. The
discrepancy criteria are computed for a design in the unit cube [0,1]d. If this
condition is not satisfied the design is automatically rescaled.

type type of discrepancies (single value or vector) to be computed:

’all’ all type of discrepancies (default)
’C2’ centered L2-discrepancy
’L2’ L2-discrepancy
’L2star’ L2star-discrepancy
’M2’ modified L2-discrepancy
’S2’ symmetric L2-discrepancy
’W2’ wrap-around L2-discrepancy
’Mix2’ mixture L2-discrepancy

Details

The discrepancy measures how far a given distribution of points deviates from a perfectly uniform
one. Different L2 discrepancies are available in DiceDesign. For example, if we denote by V ol(J)
the volume of a subset J of [0; 1]d and A(X; J) the number of points of X falling in J , the L2
discrepancy is:

DL2(X) =

[∫
[0,1]2d

(
A(X, Ja,b)

n
− V ol(Ja,b)

)2

dadb

]1/2

where a = (a1; ...; ad)
′, b = (b1; ...; bd)

′ and Ja,b = [a1; b1) × ... × [ad; bd). The other L2-
discrepancies are defined according to the same principle with different form from the subset J .

discrepancyCriteria 7

Among all the possibilities, discrepancyCriteria implements only the L2 discrepancies because it
can be expressed analytically even for high dimension.

Centered L2-discrepancy is computed using the analytical expression done by Hickernell (1998).
The user will refer to Pleming and Manteufel (2005) to have more details about the wrap around
discrepancy.

Value

A list containing the L2-discrepancies of the design.

Author(s)

J. Franco, D. Dupuy & B. Iooss

References

Fang K.T, Li R. and Sudjianto A. (2006) Design and Modeling for Computer Experiments, Chap-
man & Hall.

Fang K-T., Liu M-Q., Qin H. and Zhou Y-D. (2018) Theory and application of uniform experimental
designs. Springer.

Franco J. (2008) Planification d’experiences numerique en phase exploratoire pour la simulation
des phenomenes complexes, PhD thesis, Ecole Nationale Superieure des Mines de Saint Etienne.

Hickernell F.J. (1998) A generalized discrepancy and quadrature error bound. Mathematics of Com-
putation, 67, 299-322.

Pleming J.B. and Manteufel R.D. (2005) Replicated Latin Hypercube Sampling, 46th Structures,
Structural Dynamics & Materials Conference, 16-21 April 2005, Austin (Texas) – AIAA 2005-
1819.

See Also

distance criteria (coverage, meshRatio, mindist and phiP)

Examples

dimension <- 2
n <- 40
X <- matrix(runif(n*dimension), n, dimension)
discrepancyCriteria(X)

8 discrepESE_LHS

discrepESE_LHS Enhanced Stochastic Evolutionnary (ESE) algorithm for Latin Hyper-
cube Sample (LHS) optimization via L2-discrepancy criteria

Description

The objective is to produce low-discrepancy LHS. ESE is a powerful genetic algorithm to produce
space-filling designs. It has been adapted here to main discrepancy criteria.

Usage

discrepESE_LHS(design, T0=0.005*discrepancyCriteria(design,type='C2')[[1]],
inner_it=100, J=50, it=2, criterion="C2")

Arguments

design a matrix (or a data.frame) corresponding to the design of experiments.
T0 The initial temperature of the ESE algorithm
inner_it The number of iterations for inner loop
J The number of new proposed LHS inside the inner loop
it The number of iterations for outer loop
criterion The criterion to be optimized. One can choose three different L2-discrepancies:

the C2 (centered) discrepancy ("C2"), the L2-star discrepancy ("L2star") and the
W2 (wrap-around) discrepancy ("W2")

Details

This function implements a stochastic algorithm (ESE) to produce optimized LHS. It is based on
Jin et al works (2005). Here, it has been adapted to some discrepancy criteria taking into account
new ideas about the revaluations of discrepancy value after a LHS elementary perturbation (in order
to avoid computing all terms in the discrepancy formulas).

Value

A list containing:

InitialDesign the starting design
T0 the initial temperature of the ESE algorithm
inner_it the number of iterations for inner loop
J the number of new proposed LHS inside the inner loop
it the number of iterations for outer loop
criterion the criterion to be optimized
design the matrix of the final design (low-discrepancy LHS)
critValues vector of criterion values along the iterations
tempValues vector of temperature values along the iterations
probaValues vector of acceptation probability values along the iterations

discrepSA_LHS 9

Author(s)

G.Damblin & B. Iooss

References

Damblin G., Couplet M., and Iooss B. (2013). Numerical studies of space filling designs: optimiza-
tion of Latin Hypercube Samples and subprojection properties, Journal of Simulation, 7:276-289,
2013.

M. Morris and J. Mitchell (1995) Exploratory designs for computational experiments. Journal of
Statistical Planning and Inference, 43:381-402.

R. Jin, W. Chen and A. Sudjianto (2005) An efficient algorithm for constructing optimal design of
computer experiments. Journal of Statistical Planning and Inference, 134:268-287.

See Also

Latin Hypercube Sample(lhsDesign), discrepancy criteria(discrepancyCriteria), geometric cri-
terion (mindistphiP), optimization (maximinSA_LHS, maximinESE_LHS, discrepSA_LHS)

Examples

Not run:
dimension <- 2
n <- 10
X <- lhsDesign(n, dimension)$design
Xopt <- discrepESE_LHS(X, T0=0.005*discrepancyCriteria(X, type='C2')[[1]],

inner_it=100, J=50, it=2)
plot(Xopt$design)
plot(Xopt$critValues, type="l")

End(Not run)

discrepSA_LHS Simulated annealing (SA) routine for Latin Hypercube Sample (LHS)
optimization via L2-discrepancy criteria

Description

The objective is to produce low-discrepancy LHS. SA is an efficient algorithm to produce space-
filling designs. It has been adapted here to main discrepancy criteria.

Usage

discrepSA_LHS(design, T0=10, c=0.95, it=2000, criterion="C2", profile="GEOM", Imax=100)

10 discrepSA_LHS

Arguments

design a matrix (or a data.frame) corresponding to the design of experiments

T0 The initial temperature

c A constant parameter regulating how the temperature goes down

it The number of iterations

criterion The criterion to be optimized. One can choose three different L2-discrepancies:
the C2 (centered) discrepancy ("C2"), the L2-star discrepancy ("L2star") and the
W2 (wrap-around) discrepancy ("W2")

profile The temperature down-profile, purely geometric called "GEOM", geometrical
according to the Morris algorithm called "GEOM_MORRIS" or purely linear
called "LINEAR"

Imax A parameter given only if you choose the Morris down-profile. It adjusts the
number of iterations without improvement before a new elementary perturbation

Details

This function implements a classical routine to produce optimized LHS. It is based on the work
of Morris and Mitchell (1995). They have proposed a SA version for LHS optimization according
to mindist criterion. Here, it has been adapted to some discrepancy criteria taking in account new
ideas about the reevaluations of a discrepancy value after a LHS elementary perturbation (in order
to avoid computing all terms in the discrepancy formulas).

Value

A list containing:

InitialDesign the starting design

T0 the initial temperature of the SA algorithm

c the constant parameter regulating how the temperature goes down

it the number of iterations

criterion the criterion to be optimized

profile the temperature down-profile

Imax The parameter given in the Morris down-profile

design the matrix of the final design (low-discrepancy LHS)

critValues vector of criterion values along the iterations

tempValues vector of temperature values along the iterations

probaValues vector of acceptation probability values along the iterations

Author(s)

G. Damblin & B. Iooss

dmaxDesign 11

References

Damblin G., Couplet M., and Iooss B. (2013). Numerical studies of space filling designs: optimiza-
tion of Latin Hypercube Samples and subprojection properties, Journal of Simulation, 7:276-289,
2013.

M. Morris and J. Mitchell (1995) Exploratory designs for computationnal experiments. Journal of
Statistical Planning and Inference, 43:381-402.

R. Jin, W. Chen and A. Sudjianto (2005) An efficient algorithm for constructing optimal design of
computer experiments. Journal of Statistical Planning and Inference, 134:268-287.

See Also

Latin Hypercube Sample(lhsDesign),discrepancy criteria(discrepancyCriteria), geometric cri-
terion (mindistphiP), optimization (maximinSA_LHS,maximinESE_LHS ,discrepESE_LHS)

Examples

dimension <- 2
n <- 10
X <- lhsDesign(n, dimension)$design

Optimize the LHS with C2 criterion
Xopt <- discrepSA_LHS(X, T0=10, c=0.99, it=2000, criterion="C2")
plot(Xopt$design)
plot(Xopt$critValues, type="l")

Optimize the LHS with C2 criterion and GEOM_MORRIS profile
Not run:
Xopt2 <- discrepSA_LHS(X, T0=10, c=0.99, it=1000, criterion="C2", profile="GEOM_MORRIS")
plot(Xopt2$design)

End(Not run)

dmaxDesign Maximum Entropy Designs

Description

Space-Filling Designs with n experiments based on covariance matrix in [0,1]d.

Usage

dmaxDesign(n, dimension, range, niter_max=1000, seed=NULL)

12 dmaxDesign

Arguments

n number of experiments

dimension number of variables

range range of variogram

niter_max number of iterations

seed seed used to generate uniform design

Details

Maximum entropy design is a kind of optimal design based on Shannon’s definition of entropy as
the amount of information. Originally, maximum entropy sampling was proposed by Shewry and
Wynn (1987). The goal of the design is to maximize the entropy defined as the determinant of the
correlation matrix using a Fedorov-Mitchell exchange algorithm.

The spatial correlation matrix is defined by C = (ρij):

ρij = 1− γ (hij) if hij ≤ a,
ρij = 0 if hij > a,

where hij is the distance between xi and xj , a denotes the range of the variogram and γ is a
spherical variogram:

γ(h) = 1.5
h

a
− 0.5

(
h

a

)3

for h ≤ a

Value

A list with components:

n the number of points

design the design of experiments

dimension the number of variables

range the range of the variogram

niter_mx the number of iterations

design_init the initial distribution

det_init the value of the determinant for the initial distribution

det_end the value of the determinant at the end of the procedure

seed the value of the seed

Author(s)

J. Franco

factDesign 13

References

Currin C., Mitchell T., Morris M. and Ylvisaker D. (1991) Bayesian Prediction of Deterministic
Functions With Applications to the Design and Analysis of Computer Experiments, American Sta-
tistical Association, 86, 416, 953-963.

Shewry, M. C. and Wynn and H. P. (1987) Maximum entropy sampling, Journal of Applied Statistics
14, 165-170.

Examples

n <- 20
dimension <- 2
range <-0.9
niter_max <- 200
out <- dmaxDesign(n, dimension, range, niter_max)

Change the dimnames, adjust to range (-10, 10) and round to 2 digits
xDRDN(out, letter = "T", dgts = 2, range = c(-10, 10))

factDesign Full Factorial Designs

Description

Create a factorial design with n = pow(levels,dimension) experiments in [0,1]d.

Usage

factDesign(dimension, levels)

Arguments

dimension an integer given the number of input variables

levels an integer given the number of levels

Details

It is possible to take a different number of levels for any factor. In this case, the argument levels
should be a vector.

Value

factDesign returns a list containing all the input arguments detailed before, plus the following
components:

n the number of experiments

design the design of experiments

14 faureprimeDesign

Author(s)

G. Pujol and J. Franco

Examples

First example
g1 <- factDesign(2, 7)
plot(g1$design, xlim=c(0,1), ylim=c(0,1))

Second example
g2 <- factDesign(2, c(2,7))
plot(g2$design, xlim=c(0,1), ylim=c(0,1))

Change the dimnames, adjust to range (-10, 10) and round to 2 digits
xDRDN(g1, letter = "T", dgts = 2, range = c(-10, 10))
xDRDN(g2, letter = "T", dgts = 2, range = c(-10, 10))

faureprimeDesign A special case of the low discrepancy Faure sequence

Description

Generate a Faure sequence with n = pu−1 experiments in [0,1]d or other domains (see the details)
where p is the first prime number equal or larger than d and u is an exponent, usually 2.

Usage

faureprimeDesign(dimension, u = 2, range = c(0, -1))

Arguments

dimension the number of variables (< 199)

u the exponent applied to the prime number

range the scale (min and max) of the inputs. See the details for the six predefined
ranges.

Details

This is a special case of runif.faure where the number of generated points depends exclusively
on the dimension and the selected exponent. For the exponent u = 2, the design is orthogonal and
has resolution 4. It is a perfect grid (p − 1)(p + 1) on each pair of variables where p is the first
prime number equal or larger than the dimension d.

Six domain ranges are predefined and cover most applications:

• c(0, 0) corresponds to [0, n]d.

• c(1, 1) corresponds to [1− n, n− 1]d = [2− pu, pu − 2]d.

• c(0, 1) corresponds to [0, 1]d.

faureprimeDesign 15

• c(0,-1) corresponds to [p−u, 1− p−u]d.

• c(-1,-1) corresponds to [−1 + 2p−u, 1− 2p−u]d.

• c(-1, 1) corresponds to [−1, 1]d.

Value

faureprimeDesign returns a list with the following components:

• design: the design of experiments

• n: the number of experiments

• dimension: the dimension

• prime: the prime number

• u: the exponent

Author(s)

P. Kiener

References

Faure H. (1982), Discrepance de suites associees a un systeme de numeration (en dimension s),
Acta Arith., 41, 337-351.

Owen A.B. (2020), On dropping the first Sobol point, https://arxiv.org/abs/2008.08051.

Examples

Range c(0,-1) returns the design produced by runif.faure()
plan1 <- runif.faure(n = 24, dimension = 5)$design ; plan1
plan2 <- faureprimeDesign(dimension = 5, range = c(0,-1))$design ; plan2
all.equal(plan1, plan2, tolerance = 1e-15)

Range c(0,0) returns the original sequence of integers.
The first (p-1) lines are on the first diagonal.
The remaining lines are LHSs grouped in p-1 blocks of p rows.
d <- p <- 5
plan <- faureprimeDesign(dimension = d, range = c(0,0))$design ; plan
apply(plan, 2, sort)

A regular grid (p-1)x(p+1) rotated by a small angle
pairs(plan)

plot(plan[,1], plan[,2], las = 1)
points(plan[1:(p-1),1], plan[1:(p-1),2], pch = 17, cex = 1.6)
abline(v = plan[1:(p-1),1], col = 4)

Designs of dimensions 24x5 in various ranges
lstrg <- list(p0p0 = c(0,0), p1p1 = c(1,1), p0p1 = c(0,1),

p0m1 = c(0,-1), m1m1 = c(-1,-1), m1p1 = c(-1,1))
lst <- lapply(lstrg, function(rg) faureprimeDesign(

https://arxiv.org/abs/2008.08051

16 lhsDesign

dimension = 5, u = 2, range = rg)$design)
lapply(lst, tail)
sapply(lst, range)

The odd designs (p1m1, m1m1, m1p1) are orthogonal and have resolution 4.
library(lattice)

mat <- lst$m1m1 ; colnames(mat) <- LETTERS[1:5]
fml <- ~ (A+B+C+D+E)^2+I(A^2)+I(B^2)+I(C^2)+I(D^2)+I(E^2)
mmm <- model.matrix(fml, data = as.data.frame(mat))[,-1] ; tail(mmm)
cmm <- round(cov2cor(crossprod(mmm)), 3) ; cmm
lattice::levelplot(cmm[, ncol(cmm):1], at = seq(-1, 1, length.out = 10),

col.regions = rev(grDevices::hcl.colors(9, "PuOr")))

lhsDesign Latin Hypercube Designs

Description

Simple (random) Latin Hypercube Design (randomized or centered) with n experiments in [0,1]d.

Usage

lhsDesign(n, dimension, randomized=TRUE, seed=NULL)

Arguments

n number of experiments

dimension number of variables

randomized TRUE for randomized LHS; FALSE for centered LHS

seed seed used to generate the random permutations and perturbations

Details

This program builds a Latin Hypercube Design (LHD), also called a Latin Hypercube Sample
(LHS), on the space [0,1]d (with uniform probability measures). LHD aims at ensuring that each
variable has its whole range well scanned: the range of each variable is divided into n equally prob-
able stratas. Each stratum of each variable contains only one point of the LHD. Centered LHD is
obtained by choosing for each point the center of the corresponding case, while randomized LHD
is obtained by adding random perturbations inside each point case.

Once the sample is generated, the uniform sample from a column can be transformed to any distri-
bution by using the quantile functions.

maximinESE_LHS 17

Value

A list with components:

n the number of points

dimension the number of variables

design the design of experiments

randomized the type of LHD

seed the value of the seed

Author(s)

B. Iooss

References

McKay M., Conover W. and Beckman R. (1979) A comparison of three methods for selecting values
of input variables in the analysis of output from a computer code, Technometrics, 21, 2, 239-245.

Stein M. (1987) Large sample properties of simulations using Latin hypercube sampling, Techno-
metrics, 29, 143-151.

See Also

LHD optimization (maximinSA_LHS,discrepSA_LHS,maximinESE_LHS ,discrepESE_LHS)

Examples

n <- 20
dimension <- 2
out <- lhsDesign(n, dimension)
out$design

Change the dimnames, adjust to range (-10, 10) and round to 2 digits
xDRDN(out, letter = "T", dgts = 2, range = c(-10, 10))

maximinESE_LHS Enhanced Stochastic Evolutionnary (ESE) algorithm for Latin Hyper-
cube Sample (LHS) optimization via phiP criteria

Description

The objective is to produce maximin LHS. ESE is a powerful genetic algorithm allowing to produce
space-filling designs.

Usage

maximinESE_LHS(design, T0=0.005*phiP(design,p=50), inner_it=100, J=50, it=1, p=50)

18 maximinESE_LHS

Arguments

design a matrix (or a data.frame) corresponding to the design of experiments.

T0 The initial temperature of the ESE algorithm

inner_it The number of iterations for inner loop

J The number of new proposed LHS inside the inner loop

it The number of iterations for outer loop

p power required in phiP criterion

Details

This function implements a stochastic algorithm (ESE) to produce optimized LHS. It is based on
Jin et al works (2005).

Value

A list containing:

InitialDesign the starting design

T0 the initial temperature of the ESE algorithm

inner_it the number of iterations for inner loop

J the number of new proposed LHS inside the inner loop

it the number of iterations for outer loop

p power required in phiP criterion

design the matrix of the final design (maximin LHS)

critValues vector of criterion values along the iterations

tempValues vector of temperature values along the iterations

probaValues vector of acceptation probability values along the iterations

Author(s)

G. Damblin & B. Iooss

References

Damblin G., Couplet M., and Iooss B. (2013). Numerical studies of space filling designs: optimiza-
tion of Latin Hypercube Samples and subprojection properties, Journal of Simulation, 7:276-289,
2013.

M. Morris and J. Mitchell (1995) Exploratory designs for computationnal experiments. Journal of
Statistical Planning and Inference, 43:381-402.

R. Jin, W. Chen and A. Sudjianto (2005) An efficient algorithm for constructing optimal design of
computer experiments. Journal of Statistical Planning and Inference, 134:268-287.

Pronzato, L. and Muller, W. (2012). Design of computer experiments: space filling and beyond,
Statistics and Computing, 22:681-701.

maximinSA_LHS 19

See Also

Latin Hypercube Sample (lhsDesign), discrepancy criteria (discrepancyCriteria), geometric
criterion (mindist, phiP), optimization (maximinSA_LHS, discrepESE_LHS, discrepSA_LHS)

Examples

dimension <- 2
n <- 10
X <- lhsDesign(n, dimension)$design
Xopt <- maximinESE_LHS(X, T0=0.005*phiP(X), inner_it=100, J=50, it=2)
plot(Xopt$design)
plot(Xopt$critValues, type="l")

maximinSA_LHS Simulated annealing (SA) routine for Latin Hypercube Sample (LHS)
optimization via phiP criteria

Description

The objective is to produce maximin LHS. SA is an efficient algorithm to produce space-filling
designs.

Usage

maximinSA_LHS(design, T0=10, c=0.95, it=2000, p=50, profile="GEOM", Imax=100)

Arguments

design a matrix (or a data.frame) corresponding to the design of experiments
T0 The initial temperature of the SA algorithm
c A constant parameter regulating how the temperature goes down
it The number of iterations
p power required in phiP criterion
profile The temperature down-profile, purely geometric called "GEOM", geometrical

according to the Morris algorithm called "GEOM_MORRIS" or purely linear
called "LINEAR"

Imax A parameter given only if you choose the Morris down-profile. It adjusts the
number of iterations without improvement before a new elementary perturbation

Details

This function implements a classical routine to produce optimized LHS. It is based on the work
of Morris and Mitchell (1995). They have proposed a SA version for LHS optimization according
to mindist criterion. Here, it has been adapted to the phiP criterion. It has been shown (Pronzato
and Muller, 2012, Damblin et al., 2013) that optimizing phiP is more efficient to produce max-
imin designs than optimizing mindist. When p tends to infinity, optimizing a design with phi_p is
equivalent to optimizing a design with mindist.

20 maximinSA_LHS

Value

A list containing:

InitialDesign the starting design

T0 the initial temperature of the SA algorithm

c the constant parameter regulating how the temperature goes down

it the number of iterations

p power required in phiP criterion

profile the temperature down-profile

Imax The parameter given in the Morris down-profile

design the matrix of the final design (maximin LHS)

critValues vector of criterion values along the iterations

tempValues vector of temperature values along the iterations

probaValues vector of acceptation probability values along the iterations

Author(s)

G. Damblin & B. Iooss

References

Damblin G., Couplet M., and Iooss B. (2013). Numerical studies of space filling designs: optimiza-
tion of Latin Hypercube Samples and subprojection properties, Journal of Simulation, 7:276-289,
2013.

M. Morris and J. Mitchell (1995) Exploratory designs for computationnal experiments. Journal of
Statistical Planning and Inference, 43:381-402.

R. Jin, W. Chen and A. Sudjianto (2005) An efficient algorithm for constructing optimal design of
computer experiments. Journal of Statistical Planning and Inference, 134:268-287.

Pronzato, L. and Muller, W. (2012). Design of computer experiments: space filling and beyond,
Statistics and Computing, 22:681-701.

See Also

Latin Hypercube Sample (lhsDesign), discrepancy criteria (discrepancyCriteria), geometric
criterion (mindist, phiP), optimization (discrepSA_LHS, maximinESE_LHS, discrepESE_LHS)

Examples

dimension <- 2
n <- 10
X <- lhsDesign(n ,dimension)$design
Xopt <- maximinSA_LHS(X, T0=10, c=0.99, it=2000)
plot(Xopt$design)
plot(Xopt$critValues, type="l")
plot(Xopt$tempValues, type="l")

meshRatio 21

Not run:
Xopt <- maximinSA_LHS(X, T0=10, c=0.99, it=1000, profile="GEOM_MORRIS")

End(Not run)

meshRatio MeshRatio measure

Description

The meshRatio criterion is the ratio between the maximimum and the minimum distance between
two points of the experimental design.

Usage

meshRatio(design)

Arguments

design a matrix (or a data.frame) representing the design of experiments in the unit
cube [0,1]d. If this last condition is not fulfilled, a transformation into [0,1]d is
applied before the computation of the criteria.

Details

The meshRatio criterion is defined by

meshRatio =
max1≤i≤n γi
min1≤i≤n γi

where γi denotes the minimal distance between the point xi and the other points of the design.

Note that for a regular mesh, meshRatio=1.

Value

A real number equal to the value of the meshRatio criterion for the design.

Author(s)

J. Franco

References

Gunzburer M. and Burkdart J. (2004), Uniformity measures for point samples in hypercubes, https:
//people.sc.fsu.edu/~jburkardt/.

See Also

Other distance criteria like meshRatio, phiP and mindist.

Discrepancy measures provided by discrepancyCriteria.

https://people.sc.fsu.edu/~jburkardt/
https://people.sc.fsu.edu/~jburkardt/

22 mindist

Examples

dimension <- 2
n <- 40
X <- matrix(runif(n*dimension), n, dimension)
meshRatio(X)

mindist Mindist measure

Description

Compute the mindist criterion (also called maximin)

Usage

mindist(design)

Arguments

design a matrix (or a data.frame) representing the design of experiments in the unit
cube [0,1]d. If this last condition is not fulfilled, a transformation into [0,1]d is
applied before the computation of the criteria.

Details

The mindist criterion is defined by

mindist = min
xi∈X

(γi)

where γi is the minimal distance between the point xi and the other points xk of the design.

A higher value corresponds to a more regular scaterring of design points.

Value

A real number equal to the value of the mindist criterion for the design.

Author(s)

J. Franco

References

Gunzburer M., Burkdart J. (2004), Uniformity measures for point samples in hypercubes, https:
//people.sc.fsu.edu/~jburkardt/.

Jonshon M.E., Moore L.M. and Ylvisaker D. (1990), Minmax and maximin distance designs, J. of
Statis. Planning and Inference, 26, 131-148.

Chen V.C.P., Tsui K.L., Barton R.R. and Allen J.K. (2003), A review of design and modeling in
computer experiments, Handbook of Statistics, 22, 231-261.

https://people.sc.fsu.edu/~jburkardt/
https://people.sc.fsu.edu/~jburkardt/

mstCriteria 23

See Also

other distance criteria like meshRatio and phiP, discrepancy measures provided by discrepancyCriteria.

Examples

dimension <- 2
n <- 40
X <- matrix(runif(n*dimension), n, dimension)
mindist(X)

mstCriteria Deriving the MST criteria

Description

Compute both the mean and the standard deviation of the Minimal Spanning Tree (MST)

Usage

mstCriteria(design, plot2d="FALSE")

Arguments

design a matrix (or a data.frame) corresponding to the design of experiments.

plot2d an argument for visualizing the mst of a 2d design

Details

In our context, a MST is a tree whose the sum of the lengthes of the edges is minimal. Even if
unicity does not hold, the overall length is stable. The mean and the standard deviation of the
lengthes of the edges are usually derived to analyze the geometric profile of the design. A large
mean and a small standard deviation characterize a so-called quasi-periodic design.

Value

A list containing two components:

tree a list containing the MST: each component of it contains a vector with all ver-
tices which are connected with the experiment corresponding to the number of
the components

stats vector with both the mean and the standard deviation values of the lengthes of
the edges

Author(s)

G. Damblin & B. Iooss

24 nolhDesign

References

Damblin G., Couplet M., and Iooss B. (2013). Numerical studies of space filling designs: optimiza-
tion of Latin hypercube samples and subprojection properties, Journal of Simulation, 7:276-289,
2013.

Dussert, C., Rasigni, G., Rasigni, M., and Palmari, J. (1986). Minimal spanning tree: A new
approach for studying order and disorder. Physical Review B, 34(5):3528-3531.

Franco J. (2008). Planification d’experiences numerique en phase exploratoire pour la simulation
des phenomenes complexes, PhD thesis, Ecole Nationale Superieure des Mines de Saint Etienne.

Franco, J., Vasseur, O., Corre, B., and Sergent, M. (2009). Minimum spanning tree: A new ap-
proach to assess the quality of the design of computer experiments. Chemometrics and Intelligent
Laboratory Systems, 97:164-169.

Prim, R.C. (1957). Shortest connection networks and some generalizations, in Bell System Techni-
cal Journal 36:1389-1401.

Examples

dimension <- 2
n <- 40
X <- matrix(runif(n*dimension), n, dimension)
mstCriteria(X, plot2d=TRUE)

nolhDesign Cioppa’s Nearly Orthogonal Latin Hypercube Designs

Description

This function generates a NOLH design of dimension 2 to 29 and normalizes it to the selected range.
The design is extracted from Cioppa’s NOLHdesigns list.

Usage

nolhDesign(dimension, range = c(0, 1))

Arguments

dimension number of input variables

range the scale (min and max) of the inputs. Range (0, 0) and (1, 1) are special cases
and call integer ranges (−m,m) and (0, 2m). See the examples

Value

A list with components:

n the number of lines/experiments

dimension the number of columns/input variables

design the design of experiments

NOLHdesigns 25

Author(s)

T.M. Cioppa for the designs. P. Kiener for the R code.

See Also

Cioppa’s list NOLHdesigns. Other NOLH and OLH designs: nolhdrDesign, olhDesign.

Examples

Classical normalizations
nolhDesign(8, range = c(1, 1))
nolhDesign(8, range = c(0, 0))
nolhDesign(8, range = c(0, 1))
nolhDesign(8, range = c(-1, 1))

Change the dimnames, adjust to range (-10, 10) and round to 2 digits
xDRDN(nolhDesign(8), letter = "T", dgts = 2, range = c(-10, 10))

A list of designs
lapply(5:9, function(n) nolhDesign(n, range = c(-1, 1))$design)

NOLHdesigns List of Cioppa’s Nearly Orthogonal Latin Hypercubes designs

Description

A list of the NOLH designs for 2 to 29 input variables proposed by Cioppa in 2007. These designs
combine a latin structure, orthogonality between the main terms and the interactions (+ squares)
and reduced correlations between the interactions (+ squares).

This list combines the Excel spreadsheets published by Sanchez (see Source). It is used internally
by the function nolhDesign which provides various normalizations.

Usage

NOLHdesigns

Format

A list of 5 matrices representing designs of experiments for 8 to 29 input variables:

nolh2_7: 2 to 7 input variables, 17 experiments.

nolh8_11: 8 to 11 input variables, 33 experiments.

nolh12_16: 12 to 16 input variables, 65 experiments.

nolh17_22: 17 to 22 input variables, 129 experiments.

nolh23_29: 23 to 29 input variables, 257 experiments.

26 nolhdrDesign

Author(s)

T.M. Cioppa for the designs. P. Kiener for the R code.

Source

Sanchez, S. M. (2011). NOLHdesigns in Excel file. Available online at https://nps.edu/web/
seed/software-downloads/

References

Cioppa T.M., Lucas T.W. (2007). Efficient nearly orthogonal and space-filling Latin hypercubes.
Technometrics 49, 45-55.

Kleijnen, J.P.C., Sanchez S.M., T.W. Lucas and Cioppa T. M.. A user’s guide to the brave new
world of designing simulation experiments. INFORMS Journal on Computing 17(3): 263-289.

Ye, K. Q. (1998). Orthogonal Latin hypercubes and their application in computer experiments. J.
Amer. Statist. Asso. 93, 1430- 1439.

See Also

The main function nolhDesign. De Rainville’s NOLH design list: NOLHDRdesigns.

Examples

data(NOLHdesigns)

all matrices
names(NOLHdesigns)
lapply(NOLHDRdesigns, tail, 2)

The first matrix/design
NOLHdesigns[["nolh2_7"]]

nolhdrDesign De Rainville’s Nearly Orthogonal Latin Hypercube Designs

Description

This function generates a NOLH design of dimension 2 to 29 and normalizes it to the selected range.
From 2 to 7 input variables, the design is extracted from Cioppa’s NOLHdesigns list and from 8 to
29 input variables it is extracted from De Rainville’s NOLHDRdesigns list.

Usage

nolhdrDesign(dimension, range = c(0, 1))

https://nps.edu/web/seed/software-downloads/
https://nps.edu/web/seed/software-downloads/

NOLHDRdesigns 27

Arguments

dimension number of input variables

range the scale (min and max) of the inputs. Range (0, 0) and (1, 1) are special cases
and call integer ranges (−m,m) and (0, 2m). See the examples

Value

A list with components:

n the number of lines/experiments

dimension the number of columns/input variables

design the design of experiments

Author(s)

T.M. Cioppa and F.-M. De Rainville for the designs. P. Kiener for the R code.

See Also

De Rainville’s list NOLHDRdesigns. Other NOLH or OLH designs: nolhDesign, olhDesign.

Examples

Classical normalizations
nolhdrDesign(8, range = c(1, 1))
nolhdrDesign(8, range = c(0, 1))
nolhdrDesign(8, range = c(0, 0))
nolhdrDesign(8, range = c(-1, 1))

Change the dimnames, adjust to range (-10, 10) and round to 2 digits
xDRDN(nolhdrDesign(8), letter = "T", dgts = 2, range = c(-10, 10))

A list of designs
lapply(5:9, function(n) nolhdrDesign(n, range = c(-1, 1))$design)

NOLHDRdesigns List of De Rainville’s Nearly Orthogonal Latin Hypercubes designs

Description

A list of the NOLH designs for 8 to 29 input variables proposed by De Rainville in 2012. These
designs are said to be an improvment of Cioppa’s NOLH designs as they have the same structure
but better dispersion measures like the discrepancy.

This list combines the csv files published by De Rainville (see Source), centered and normalized to
integer values. It is used internally by the function nolhdrDesign which provides various normal-
izations.

28 NOLHDRdesigns

Usage

NOLHDRdesigns

Format

A list of 22 matrices representing designs of experiments for 8 to 29 input variables:

nolhdr08 to nolhdr11: 8, 9, 10, 11 input variables, 33 experiments.

nolhdr12 to nolhdr16: 12, 13, 14, 15, 16 input variables, 65 experiments.

nolhdr17 to nolhdr22: 17, 18, 19, 20, 21, 22 input variables, 129 experiments.

nolhdr23 to nolhdr29: 23, 24, 25, 26, 27, 28, 29 input variables, 257 experiments.

Author(s)

F.-M. De Rainville for the designs. P. Kiener for the R code.

Source

Main website: http://qrand.gel.ulaval.ca/

The python source code: https://github.com/fmder/pynolh/

The python package: https://pypi.org/project/pynolh/.

References

De Rainville F.-M., Gagne C., Teytaud O., Laurendeau D. (2012). Evolutionary optimization of
low-discrepancy sequences. ACM Transactions on Modeling and Computer Simulation (TOMACS),
22(2), 9.

Cioppa T.M., Lucas T.W. (2007). Efficient nearly orthogonal and space-filling Latin hypercubes.
Technometrics 49, 45-55.

See Also

The main function nolhdrDesign. Cioppa’s NOLH design list: NOLHdesigns.

Examples

data(NOLHDRdesigns)

all matrices
names(NOLHDRdesigns)
lapply(NOLHDRdesigns, tail, 2)

The first matrix/design
NOLHDRdesigns[["nolhdr08"]]

http://qrand.gel.ulaval.ca/
https://github.com/fmder/pynolh/
https://pypi.org/project/pynolh/

OA131 29

OA131 A 3D orthogonal array of strength 2

Description

A 3-dimensional linear orthogonal array (OA) of strength 2 with 49 points. The design points are
equally spaced into 2 dimensional coordinate planes. However by construction, such OAs satisfy
a linear relation, here: x1 + 3*x2 + x3 = 0 (mod 7). As a consequence, the design points are con-
tained in parallel planes orthogonal to (1,3,1). Actually, they are also contained in parallel planes
orthogonal to other directions, as (2,-1,2) or (3,2,3), since the congruence relation leads to 2*x1
- x2 + 2*x3 = 0 (mod 7) or 3*x1 + 2*x2 + 3*x3 = 0 (mod 7). For instance, they are contained in 4
parallel planes orthogonal to (2,-1,2).

Usage

data(OA131)

Format

A data frame with 49 observations on the following 3 variables.

x1 first coordinate

x2 second coordinate

x3 third coordinate

Source

Roustant O., Franco J., Carraro L., Jourdan A. (2010), A radial scanning statistic for selecting
space-filling designs in computer experiments, MODA-9 proceedings.

Examples

data(OA131)

centering and reducing to [0,1]^3
OA <- (OA131 + 0.5)/7
pairs(OA, xlim=c(0,1), ylim=c(0,1))

Not run:
library(lattice)
cloud(x3~x1+x2, data=OA, xlim=c(0,1), ylim=c(0,1), zlim=c(0,1),

screen = list(z = 50, x = -70, y = 0))
End(Not run)

30 olhDesign

OA131_scrambled A scrambled 3D orthogonal array of strength 2

Description

This design is obtained by adding a uniform noise to each coordinate of the orthogonal array OA131.

Usage

data(OA131_scrambled)

Format

A data frame with 49 observations on the following 3 variables.

x1 first coordinate

x2 second coordinate

x3 third coordinate

Source

Roustant O., Franco J., Carraro L., Jourdan A. (2010), A radial scanning statistic for selecting
space-filling designs in computer experiments, MODA-9 proceedings.

Examples

data(OA131)
data(OA131_scrambled)

pairs(OA131, xlim=c(0,1), ylim=c(0,1))
pairs(OA131_scrambled, xlim=c(0,1), ylim=c(0,1))

olhDesign Nguyen’s Orthogonal Latin Hypercube Designs

Description

Generate the Orthogonal Latin Hypercube (OLH) designs proposed by Nguyen in 2008. These
OLHs have a latin structure, an orthogonality between the main terms and the interactions (+
squares) and low correlations between the interactions (+ squares). Very larges matrices can be
obtained as the number of input variables and hence the number of lines is unconstrained. When
the number of input variables is a power of 2, OLHs have d columns and n = 2d+ 1 lines (exper-
iments). A vertical truncature is applied when the number of input variables is not a power of 2.
Various normalizations can be applied.

olhDesign 31

Usage

olhDesign(dimension, range = c(0, 1))

Arguments

dimension number of input variables

range the scale (min and max) of the inputs. Ranges (0, 0) and (1, 1) are special cases
and call integer ranges (−d, d) and (0, 2d). See the examples

Value

A list with components:

n the number of lines/experiments

dimension the number of columns/input variables

design the design of experiments

Author(s)

N.K. Nguyen for the algorithm. P. Kiener for the recursive R code.

References

Nguyen N.K. (2008) A new class of orthogonal Latinhypercubes, Statistics and Applications, Vol-
ume 6, issues 1 and 2, pp.119-123.

See Also

Cioppa’s and De Rainville’s NOLH designs: nolhDesign, nolhdrDesign.

Examples

Classical normalizations
olhDesign(4, range = c(0, 0))
olhDesign(4, range = c(1, 1))
olhDesign(4, range = c(0, 1))
olhDesign(4, range = c(-1, 1))

Change the dimnames, adjust to range (-10, 10) and round to 2 digits
xDRDN(olhDesign(4), letter = "T", dgts = 2, range = c(-10, 10))

A list of designs
lapply(1:5, function(n) olhDesign(n, range = c(-1, 1))$design)

32 phiP

phiP phiP criterion

Description

Compute the ϕp criterion (strongly linked to mindist criterion)

Usage

phiP(design, p=50)

Arguments

design a matrix (or a data.frame) corresponding to the design of experiments.

p the "p" in the Lp norm which is taken

Details

The ϕp criterion is defined by the Lp norm of the sum of the inverses of the design inter-point
euclidean distances:

ϕp =

 ∑
i,j=1...N,i<j

d−p
ij

 1
p

A higher value corresponds to a more regular scaterring of design points.

When p tends to infinity, optimizing a design with ϕp is equivalent to optimizing a design with
mindist.

Value

A real number equal to the value of the ϕp criterion for the design.

Author(s)

G. Damblin & B.Iooss

References

Damblin G., Couplet M., and Iooss B. (2013). Numerical studies of sapce filling designs: optimiza-
tion of Latin Hypercube Samples and subprojection properties, Journal of Simulation, 7:276-289,
2013.

Fang K.-T., Li R. and Sudjianto A. (2006). Design and Modeling for Computer Experiments,
Chapman & Hall.

Pronzato, L. and Muller, W. (2012). Design of computer experiments: space filling and beyond,
Statistics and Computing, 22:681-701.

rss2d 33

See Also

geometric criterion (mindist)

Examples

dimension <- 2
n <- 40
X <- matrix(runif(n*dimension), n, dimension)
phiP(X)

rss2d 2D graphical tool for defect detection of Space-Filling Designs.

Description

For a 2-dimensional design, the 2D radial scanning statistic (RSS) scans angularly the domain. In
each direction, it compares the distribution of projected points to their theoretical distribution under
the assumption that all design points are drawn from uniform distribution. For a d-dimensional de-
sign, all pairs of dimensions are scanned.The RSS detects the defects of low discrepancy sequences
or orthogonal arrays, and can be used for selecting space-filling designs.

Usage

rss2d(design, lower, upper, gof.test.type="greenwood",
gof.test.stat=NULL, transform=NULL, n.angle=360, graphics=1,
trace=TRUE, lines.lwd = 1, lines.lty = "dotted", ...)

Arguments

design a matrix or data.frame containing the d-dimensional design of experiments. The
row no. i contains the values of the d input variables corresponding to simulation
no. i

lower the domain lower boundaries.

upper the domain upper boundaries.

gof.test.type an optional character indicating the kind of statistical test to be used to test the
goodness-of-fit of the design projections to their theoretical distribution. Several
tests are available, see unif.test.statistic. Default is "greenwood".

gof.test.stat an optional number equal to the goodness-of-fit statistic at level 5%. Default is
the modified test statistic for fully specified distribution (see details below).

transform an optional character indicating what type of transformation should be applied
before testing uniformity. Only one choice available "spacings", that lead to
over-detection. Default - and recommended - is NULL.

n.angle an optional number indicating the number of angles used. Default is 360 corre-
sponding to a 0.5-degree discretization step. Note that the RSS curve is contin-
uous.

34 rss2d

graphics an optional integer indicating whether a graph should be produced. If negative,
no graph is produced. If superior to 2, the RSS curve only is plotted in the worst
2D coordinate subspace (corr. to the worst value of statistic). If 1 (default), the
design is also added, with its projections onto the worst (oblique) axis.

trace an optional boolean. Turn it to FALSE if you want no verbosity.

lines.lwd optional number specifying the width of the straight lines involved in the graph-
ical outputs (axis and projections)

lines.lty optional character string specifying the type of the straight lines involved in the
graphical outputs (axis and projections)

... optional graphical parameters of plot function, to draw the RSS curve.

Value

a list with components:

global.stat a matrix containing the values of the global statistic (equal to the maximum of
statistic values over the RSS curve) for all pairs of dimensions.

worst.case the worst pair of dimensions, that is the one that gives the worst value of global.stat.

worst.dir the worst direction, that is the one that gives the worst value of the global statistic
in the coordinate plane defined by worst.case.

stat a vector of length n.angle containing the statitic values for each angle, in the
coordinate plane defined by worst.case.

angle a vector of length n.angle containing the corresponding angles used.

curve a (2*n.angle)x2 matrix containing the discretized RSS curve.

gof.test.stat the threshold at significance level 0.05 for the specified goodness-of-fit statistic.
It is equal to the radius of the circle superimposed on the RSS figure.

Author(s)

O. Roustant

References

Roustant O., Franco J., Carraro L., Jourdan A. (2010), A radial scanning statistic for selecting
space-filling designs in computer experiments, MODA-9 proceedings.

D Agostino R.B., Stephens M.A. (1986), Goodness-of-fit techniques, CRC Press, New York.

See Also

unif.test.statistic, unif.test.quantile, rss3d

rss3d 35

Examples

Detection of defects of Sobol designs

requires randtoolbox package
library(randtoolbox)

In 2D
rss <- rss2d(design=sobol(n=20, dim=2), lower=c(0,0), upper=c(1,1),

type="l", col="red")

In 8D
All pairs of dimensions are tried to detect the worst defect
(according to the specified goodness-of-fit statistic).
d <- 8
n <- 10*d
rss <- rss2d(design=sobol(n=n, dim=d), lower=rep(0,d), upper=rep(1,d),

type="l", col="red")

Avoid this defect with scrambling?
1. Faure-Tezuka scrambling (type "?sobol" for more details and options)
rss <- rss2d(design=sobol(n=n, dim=d, scrambling=2), lower=rep(0,d), upper=rep(1,d),

type="l", col="red")
2. Owen scrambling
rss <- rss2d(design=sobol(n=n, dim=d, scrambling=1), lower=rep(0,d), upper=rep(1,d),

type="l", col="red")

rss3d 3D graphical tool for defect detection of Space-Filling Designs.

Description

For a 3-dimensional design, the 3D radial scanning statistic (RSS) scans angularly the domain. In
each direction, it compares the distribution of projected points to their theoretical distribution under
the assumption that all design points are drawn from uniform distribution. For a d-dimensional
design, all triplets of dimensions are scanned. The RSS detects the defects of low discrepancy
sequences or orthogonal arrays, and can be used for selecting space-filling designs.

Usage

rss3d(design, lower, upper, gof.test.type = "greenwood",
gof.test.stat = NULL, transform = NULL, n.angle = 60,
graphics = 1, trace = TRUE)

Arguments

design a matrix or data.frame containing the d-dimensional design of experiments. The
row no. i contains the values of the d input variables corresponding to simulation
no. i

36 rss3d

lower the domain lower boundaries.

upper the domain upper boundaries.

gof.test.type an optional character indicating the kind of statistical test to be used to test the
goodness-of-fit of the design projections to their theoretical distribution. Several
tests are available, see unif.test.statistic. Default is "greenwood".

gof.test.stat an optional number equal to the goodness-of-fit statistic at level 5%. Default is
the modified test statistic for fully specified distribution (see details below).

transform an optional character indicating what type of transformation should be applied
before testing uniformity. Only one choice available "spacings", that lead to
over-detection. Default - and recommended - is NULL.

n.angle an optional number indicating the number of angles used. Default is 60 corre-
sponding to a 3-degree discretization step. Note that the RSS surface is contin-
uous.

graphics an optional integer indicating whether a graph should be produced. If negative,
no graph is produced. Otherwise (default), the design is plotted in the worst 3D
coordinate subspace (corr. to the worst value of statistic), with its projections
onto the worst (oblique) axis.

trace an optional boolean. Turn it to FALSE if you want no verbosity.

Details

The RSS surface is continuous. However for computational purposes, a discretization is used. The
default discretization step is tunable with n.angle.

Value

a list with components:

global.stat an array containing the values of the global statistic (equal to the maximum of
statistic values over the RSS surface) for all triplets of dimensions.

print.out the same as global.stat, but with a user-friendly printing.

worst.case the worst triplet of dimensions, that is the one that gives the worst value of
global.stat.

worst.dir the worst direction, that is the one that gives the worst value of the statistic in
the coordinate 3D subspace defined by worst.case.

stat a matrix of size n.angle*n.angle containing the statistic values for each angles
(spherical coordinates).

angle a matrix of size n.angle*n.angle containing the corresponding angles used
(spherical coordinates).

gof.test.stat the threshold at significance level 0.05 for the specified goodness-of-fit statistic.

Author(s)

O. Roustant

rss3d 37

References

Roustant O., Franco J., Carraro L., Jourdan A. (2010), A radial scanning statistic for selecting
space-filling designs in computer experiments, MODA-9 proceedings.

D Agostino R.B., Stephens M.A. (1986), Goodness-of-fit techniques, CRC Press, New York.

See Also

unif.test.statistic, unif.test.quantile, rss2d

Examples

An orthogonal array in 3D
data(OA131)

centering the design points of this 7-levels design
OA <- (OA131 + 0.5)/7

2D projections onto coordinate axis
pairs(OA, xlim=c(0,1), ylim=c(0,1))
Now let us look at the 3D properties with the 3D RSS (requires the rgl package)
rss <- rss3d(OA, lower=c(0,0,0), upper=c(1,1,1))
The worst direction detected is nearly proportional to (2,-1,2)
(type "?OA131" for explanations about this linear orthogonal array)
print(rss$worst.dir)

Now, scramble this design
X <- (OA131 + matrix(runif(49*3, 49, 3)))/7
or load the design obtained this way
data(OA131_scrambled)
OA2 <- OA131_scrambled

No feature is detected by the 2D RSS:
rss <- rss2d(OA2, lower=c(0,0,0), upper=c(1,1,1))
4 clusters are detected by the 3D RSS:
rss <- rss3d(OA2, lower=c(0,0,0), upper=c(1,1,1))

Defect detection of 8D Sobol sequences
All triplets of dimensions are tried to detect the worst defect
(according to the specified goodness-of-fit statistic).
requires randtoolbox library to generate the Sobol sequence
Not run:
library(randtoolbox)
d <- 8
n <- 10*d
rss <- rss3d(design=sobol(n=n, dim=d), lower=rep(0,d), upper=rep(1,d))
End(Not run)

38 runif.faure

runif.faure Low discrepancy sequence : Faure

Description

Generate a Faure sequence with n experiments in [0,1]d.

Usage

runif.faure(n, dimension)

Arguments

n the number of experiments

dimension the number of variables (<100)

Details

A quasirandom or low discrepancy sequence, such as the Faure, Halton, Hammersley, Niederreiter
or Sobol sequences, is "less random" than a pseudorandom number sequence, but more useful for
such tasks as approximation of integrals in higher dimensions, and in global optimization. This is
because low discrepancy sequences tend to sample space "more uniformly" than random numbers.

see randtoolbox or fOptions packages for other low discrepancy sequences.

Value

runif.halton returns a list containing all the input arguments detailed before, plus the following
component:

design the design of experiments

Author(s)

J. Franco

References

Faure H. (1982), Discrepance de suites associees a un systeme de numeration (en dimension s),
Acta Arith., 41, 337-351

Examples

f <- runif.faure(20,2)
plot(f$design, xlim=c(0,1), ylim=c(0,1))
xDRDN(f, letter="T", dgts=2, range=c(-10, 10))

scaleDesign 39

scaleDesign Scale a Design

Description

This function scales the values of the design points to values comprised in [0,1]. The scaling can
be made by the Rosenblatt transformation (uniformization by applying the empirical cumulative
distribution function) or by translating the design from maximum and minimum values (given for
each variable).

Usage

scaleDesign(design, min=NULL, max=NULL, uniformize=FALSE)

Arguments

design a matrix (or a data.frame) corresponding to the design of experiments to scale
min the vector of minimal bounds of each design variable. If not given, the minimal

value of each variable is taken
max the vector of maximal bounds of each design variable. If not given, the maximal

value of each variable is taken
uniformize boolean: TRUE to use the Rosenblatt transformation (the min and max vectors

are useless in this case). If FALSE (default value), the translation from max and
min values is applied

Value

A list containing:

design the scaled design
min the vector of minimal bounds that has been used
max the vector of maximal bounds that has been used
uniformize the value of this boolean argument
InitialDesign the starting design

Author(s)

B. Iooss

Examples

d <- 2
n <- 100
x <- matrix(rnorm(d*n), ncol=d)
xscale1 <- scaleDesign(x, uniformize=FALSE)
xscale2 <- scaleDesign(x, uniformize=TRUE)
par(mfrow=c(1,2))
plot(xscale1$design) ; plot(xscale2$design)

40 straussDesign

straussDesign Designs based on Strauss process

Description

Space-Filling Designs based on Strauss process

Usage

straussDesign(n,dimension, RND, alpha=0.5, repulsion=0.001, NMC=1000,
constraints1D=0, repulsion1D=0.0001, seed=NULL)

Arguments

n the number of experiments

dimension the number of input variables

RND a real number which represents the radius of interaction

alpha the potential power (default, fixed at 0.5)

repulsion the repulsion parameter in the unit cube (gamma)

NMC the number of McMC iterations (this number must be large to converge)

constraints1D 1 to impose 1D projection constraints, 0 otherwise

repulsion1D the repulsion parameter in 1D

seed seed for the uniform generation of number

Details

Strauss designs are Space-Filling designs initially defined from Strauss process:

π(X) = kγs(X)

where s(X) is is the number of pairs of points (xi, xj) of the design X =
(
x1, . . . , xn

)
that are

separated by a distance no greater than the radius of interaction RND, k is the normalizing constant
and γ is the repulsion parameter. This distribution corresponds to the particular case alpha=0.

For the general case, a stochastic simulation is used to construct a Markov chain which converges
to a spatial density of points π(X) described by the Strauss-Gibbs potential. In practice, the
Metropolis-Hastings algorithm is implemented to simulate a distribution of points which converges
to the stationary law:

π(X) ∝ exp(−U(X))

with a potentiel U defined by:

U(X) = β
∑

1≤i<j≤n

φ
(
∥xi − xj∥

)
where β = − ln γ, φ(h) =

(
1− h

RND

)α
if h ≤ RND and 0 otherwise.

straussDesign 41

The input parameters of straussDesign function can be interpreted as follows:

- RND is used to compute the number of pairs of points of the design separated by a distance no more
than RND. A point is said "in interaction" with another if the spheres of radius RND/2 centered on
these points intersect.

- alpha is the potential power α. The case alpha=0 corresponds to Strauss process (0-1 potential).

- repulsion is equal to the γ parameter of the Strauss process. Note that γ belongs to]0,1].

- constraints1D allows to specify some constraints into the margin. If constraints1D==1, two
repulsion parameters are needed: one for the all space (repulsion) and the other for the 1D pro-
jection (repulsion1D). Default values are repulsion=0.001 and repulsion1D=0.001. Note that
the value of the radius of interaction in the one-dimensional axis is not an input parameter and is
automatically fixed at 0.75/n.

Value

A list containing:

n the number of experiments

dimension the number d of variables

design_init the initial distribution of n points [0, 1]d

radius the radius of interaction

alpha the potential power alpha

repulsion the repulsion parameter γ

NMC the number of iterations McMC

constraints1D an integer indicating if constraints on the factorial axis are imposed. If its value
is different from zero, a component repulsion1D containing the value of the
repulsion parameter γ in dimension 1 is added at the list.

design the design of experiments in [0,1]d

seed the seed corresponding to the design

Author(s)

J. Franco

References

J. Franco, X. Bay, B. Corre and D. Dupuy (2008) Planification d’experiences numeriques a partir
du processus ponctuel de Strauss, https://hal.science/hal-00260701/fr/.

Examples

Strauss-Gibbs designs in dimension 2 (n=20 points)
S1 <- straussDesign(n=20, dimension=2, RND=0.2)
plot(S1$design, xlim=c(0,1), ylim=c(0,1))
theta <- seq(0,2*pi, by=2*pi/(100 - 1))
for(i in 1:S1$n){

lines(S1$design[i,1]+S1$radius/2*cos(theta),

https://hal.science/hal-00260701/fr/

42 unif.test.quantile

S1$design[i,2]+S1$radius/2*sin(theta), col='red')
}

2D-Strauss design
S2 <- straussDesign(n=20, dimension=2, RND=0.2, NMC=200,

constraints1D=0, alpha=0, repulsion=0.01)
plot(S2$design,xlim=c(0,1),ylim=c(0,1))

2D-Strauss designs with constraints on the axis
S3 <- straussDesign(n=20, dimension=2, RND=0.18, NMC=200,

constraints1D=1, alpha=0.5, repulsion=0.1, repulsion1D=0.01)
plot(S3$design, xlim=c(0,1),ylim=c(0,1))
rug(S3$design[,1], side=1)
rug(S3$design[,2], side=2)

Change the dimnames, adjust to range (-10, 10) and round to 2 digits
xDRDN(S3, letter="T", dgts=2, range=c(-10, 10))

unif.test.quantile Quantile of some uniformity tests

Description

Computes the quantile of a uniformity test at a given significance level (see available tests and levels
below).

Usage

unif.test.quantile(type, n, alpha)

Arguments

type a character indicating which test is used. The choices are the following: "green-
wood", "qm" (for Quesenberry-Miller), "ks" (Kolmogorov-Smirnov), "cvm" (Cramer-
Von Mises) and "V" (D+ + D- from Kolmogorov-Smirnov).

n an integer equal to the sample size.

alpha a real number equal to significance level. At present stage, only four values are
available: 0.1, 0.05, 0.025 and 0.01.

Details

Modified statistics are used. For alpha = 0.05, the quantile is (see D Agostino and Stephens, 1986,
section 4.4.): 1.358/(sqrt(n) + 0.12 + 0.11/sqrt(n)) for Kolmogorov-Smirnov and 0.461/(1+1/n)
+ 0.4/n - 0.6/n^2 for Cramer-von Mises. When the design size is < 20, the corrected value seems
to be a good approximation, but the non asymptotical value should be preferred.

unif.test.statistic 43

Value

A real number equal to the quantile of the specified test at significance level alpha for n observa-
tions.

Author(s)

O. Roustant

References

D Agostino R.B., Stephens M.A. (1986), Goodness-of-fit techniques, CRC Press, New York.

See Also

unif.test.statistic, rss2d, rss3d

unif.test.statistic Statistic of some uniformity tests

Description

Computes the statistic of a uniformity test (see available tests below).

Usage

unif.test.statistic(x, type, transform=NULL)

Arguments

x a vector containing the sample values.

type a character indicating which test is used. The choices are the following: "green-
wood", "qm" (for Quesenberry-Miller), "ks" (Kolmogorov-Smirnov), "cvm" (Cramer-
Von Mises) and "V" (D+ + D- from Kolmogorov-Smirnov).

transform an optional character indicating what type of transformation should be applied
before testing uniformity. Default is NULL.

Value

A real number equal to the statistic of the specified test.

Author(s)

O. Roustant

References

D Agostino R.B., Stephens M.A. (1986), Goodness-of-fit techniques, CRC Press, New York.

44 unscaleDesign

See Also

unif.test.quantile, rss2d

unscaleDesign Unscale a Design

Description

This function unscales the values of a scaled design (values in [0,1]). The unscaling can be made by
the inverse Rosenblatt transformation (by applying the empirical quantile function given by another
design) or by translating the design from maximum and minimum values (given for each variable).

Usage

unscaleDesign(design, min=NULL, max=NULL, uniformize=FALSE, InitialDesign=NULL)

Arguments

design a matrix (or a data.frame) corresponding to the design of experiments to unscale

min the vector of minimal bounds of each design variable

max the vector of maximal bounds of each design variable

uniformize boolean: TRUE to use the inverse Rosenblatt transformation (the min and max
vectors are useless in this case). If FALSE (default value), the translation from
max and min values is applied

InitialDesign If the inverse Rosenblatt transformation is applied (uniformize = TRUE): a ma-
trix (or a data.frame) corresponding to the design which gives the empirical
quantiles

Value

A list containing:

design the unscaled design

min the vector of minimal bounds that has been used

max the vector of maximal bounds that has been used

uniformize the value of this boolean argument

Author(s)

B. Iooss

wspDesign 45

Examples

d <- 2
n <- 100
x <- matrix(rnorm(d*n), ncol=d)
xscale <- scaleDesign(x, uniformize=TRUE)
xunscale1 <- unscaleDesign(xscale$design, uniformize=TRUE, InitialDesign=x)
xunscale2 <- unscaleDesign(xscale$design,
min=c(min(x[,1]), min(x[,2])), max = c(max(x[,1]), max(x[,2])))
par(mfrow=c(2,2))
plot(x) ; plot(xscale$design)
plot(xunscale1$design) ; plot(xunscale2$design)

wspDesign WSP algorithm

Description

The WSP (Wooton, Sergent, Phan-Tan-Luu) algorithm is an iterative algorithm based on suppres-
sion of some experiments from an initial design in each step. WSP leads to a space filling design

Usage

wspDesign(design, dmin, init = "center")

Arguments

design a matrix (or a data.frame) corresponding to the design of experiments

dmin a minimum bound for mindist value of the final design

init defines the initialization point (input coordinates) of the algorithm: "center" (de-
fault value) takes the central point of the domain "random" takes a random point
inside the domain

Details

WSP enables to create a design D which is such that mindist(D)>dmin. However, it cannot assess
the number of experiments. Similarly to straussDesign function, WSP is a powerful algorithm to
construct space filling designs in high dimension

Value

A list containing:

InitialDesign the starting design

dmin minimum bound for mindist value of the final design

design the matrix of the final design

ResidualDesign the matrix of the residual design (points of InitialDesign not in design)

46 xDRDN

Author(s)

G. Damblin & B. Iooss

References

J. Santiago, M. Claeys-Bruno, M.Sergent (2012). Construction of space filling designs using WSP
algorithm for high dimensional spaces, Chenometrics and Intelligent Laboratory Systems, 113:26-
31.

Examples

dimension <- 2
n <- 100
X <- matrix(runif(n*dimension), n, dimension)
m <- wspDesign(X, 0.1)
plot(m$design)
xDRDN(m, letter = "T", dgts = 2, range = c(-10, 10))

xDRDN Extract a Design and Give it a Range and Dimnames

Description

Extract a design contained in a list (i.e. with a design item), adjust the range, give it dimnames and
finally round the values to a certain number of digits. Colnames will look like (A,B,C), (X1,X2,X3),
(X01,X02,X03), (X001,X002,X003).

Usage

xDRDN(obj, width = 1, letter = "X", dgts = NULL, range = NULL)

Arguments

obj a list that contains a design item. Matrix or data.frame are also accepted

width the digit width in colnames (to write for instance X1, X01, X001). If 0, colnames
are filled with capital and small letters (without letters I and i) up to 50 columns

letter the generic letter used in colnames

dgts the number of digits to which the design is rounded

range a vector c(min, max) to adjust the range of the design. The default NULL keeps
the original range. Special ranges c(0, 0) and c(1, 1) are not accepted

Value

A rounded matrix or a data.frame with appropriate dimnames and an adjusted range.

xDRDN 47

Examples

xDRDN(lhsDesign(5, 12))
xDRDN(lhsDesign(5, 12), width = 2, letter = "V", dgts = 2, range = c(-10, 10))
head(xDRDN(olhDesign(50, range = c(1,1)), width = 0, letter = "Z"), 3)
head(xDRDN(olhDesign(51, range = c(1,1)), width = 0, letter = "Z"), 3)

Index

∗ datasets
NOLHdesigns, 25
NOLHDRdesigns, 27
OA131, 29
OA131_scrambled, 30

∗ design
coverage, 5
discrepancyCriteria, 6
discrepESE_LHS, 8
discrepSA_LHS, 9
dmaxDesign, 11
factDesign, 13
faureprimeDesign, 14
lhsDesign, 16
maximinESE_LHS, 17
maximinSA_LHS, 19
meshRatio, 21
mindist, 22
mstCriteria, 23
nolhDesign, 24
nolhdrDesign, 26
olhDesign, 30
phiP, 32
rss2d, 33
rss3d, 35
runif.faure, 38
straussDesign, 40
unif.test.quantile, 42
unif.test.statistic, 43
wspDesign, 45

∗ package
DiceDesign-package, 2

coverage, 5, 7

DiceDesign (DiceDesign-package), 2
DiceDesign-package, 2
discrepancyCriteria, 5, 6, 9, 11, 19–21, 23
discrepESE_LHS, 8, 11, 17, 19, 20
discrepSA_LHS, 9, 9, 17, 19, 20

dmaxDesign, 11

factDesign, 13
faureprimeDesign, 14

lhsDesign, 9, 11, 16, 19, 20

maximinESE_LHS, 9, 11, 17, 17, 20
maximinSA_LHS, 9, 11, 17, 19, 19
meshRatio, 5, 7, 21, 21, 23
mindist, 5, 7, 9, 11, 19–21, 22, 33
mstCriteria, 23

nolhDesign, 24, 25–27, 31
NOLHdesigns, 24, 25, 25, 26, 28
nolhdrDesign, 25, 26, 27, 28, 31
NOLHDRdesigns, 26, 27, 27

OA131, 29
OA131_scrambled, 30
olhDesign, 25, 27, 30

phiP, 5, 7, 9, 11, 19–21, 23, 32

rss2d, 33, 37, 43, 44
rss3d, 34, 35, 43
runif.faure, 14, 38

scaleDesign, 39
straussDesign, 40

unif.test.quantile, 34, 37, 42, 44
unif.test.statistic, 33, 34, 36, 37, 43, 43
unscaleDesign, 44

wspDesign, 45

xDRDN, 46

48

	DiceDesign-package
	coverage
	discrepancyCriteria
	discrepESE_LHS
	discrepSA_LHS
	dmaxDesign
	factDesign
	faureprimeDesign
	lhsDesign
	maximinESE_LHS
	maximinSA_LHS
	meshRatio
	mindist
	mstCriteria
	nolhDesign
	NOLHdesigns
	nolhdrDesign
	NOLHDRdesigns
	OA131
	OA131_scrambled
	olhDesign
	phiP
	rss2d
	rss3d
	runif.faure
	scaleDesign
	straussDesign
	unif.test.quantile
	unif.test.statistic
	unscaleDesign
	wspDesign
	xDRDN
	Index

